Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Understanding Selenium and Glutathione as Antiviral Factors in COVID-19: Does the Viral Mpro Protease Target Host Selenoproteins and Glutathione Synthesis?

Identifieur interne : 000004 ( Main/Exploration ); précédent : 000003; suivant : 000005

Understanding Selenium and Glutathione as Antiviral Factors in COVID-19: Does the Viral Mpro Protease Target Host Selenoproteins and Glutathione Synthesis?

Auteurs : Ethan Will Taylor [États-Unis] ; Wilson Radding [États-Unis]

Source :

RBID : pubmed:32984400

Abstract

Glutathione peroxidases (GPX), a family of antioxidant selenoenzymes, functionally link selenium and glutathione, which both show correlations with clinical outcomes in COVID-19. Thus, it is highly significant that cytosolic GPX1 has been shown to interact with an inactive C145A mutant of Mpro, the main cysteine protease of SARS-CoV-2, but not with catalytically active wild-type Mpro. This seemingly anomalous result is what might be expected if GPX1 is a substrate for the active protease, leading to its fragmentation. We show that the GPX1 active site sequence is substantially similar to a known Mpro cleavage site, and is identified as a potential cysteine protease site by the Procleave algorithm. Proteolytic knockdown of GPX1 is highly consistent with previously documented effects of recombinant SARS-CoV Mpro in transfected cells, including increased reactive oxygen species and NF-κB activation. Because NF-κB in turn activates many pro-inflammatory cytokines, this mechanism could contribute to increased inflammation and cytokine storms observed in COVID-19. Using web-based protease cleavage site prediction tools, we show that Mpro may be targeting not only GPX1, but several other selenoproteins including SELENOF and thioredoxin reductase 1, as well as glutamate-cysteine ligase, the rate-limiting enzyme for glutathione synthesis. This hypothesized proteolytic knockdown of components of both the thioredoxin and glutaredoxin systems is consistent with a viral strategy to inhibit DNA synthesis, to increase the pool of ribonucleotides for RNA synthesis, thereby enhancing virion production. The resulting "collateral damage" of increased oxidative stress and inflammation would be exacerbated by dietary deficiencies of selenium and glutathione precursors.

DOI: 10.3389/fnut.2020.00143
PubMed: 32984400
PubMed Central: PMC7492384


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Understanding Selenium and Glutathione as Antiviral Factors in COVID-19: Does the Viral M
<sup>pro</sup>
Protease Target Host Selenoproteins and Glutathione Synthesis?</title>
<author>
<name sortKey="Taylor, Ethan Will" sort="Taylor, Ethan Will" uniqKey="Taylor E" first="Ethan Will" last="Taylor">Ethan Will Taylor</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Radding, Wilson" sort="Radding, Wilson" uniqKey="Radding W" first="Wilson" last="Radding">Wilson Radding</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32984400</idno>
<idno type="pmid">32984400</idno>
<idno type="doi">10.3389/fnut.2020.00143</idno>
<idno type="pmc">PMC7492384</idno>
<idno type="wicri:Area/Main/Corpus">000018</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000018</idno>
<idno type="wicri:Area/Main/Curation">000018</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000018</idno>
<idno type="wicri:Area/Main/Exploration">000018</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Understanding Selenium and Glutathione as Antiviral Factors in COVID-19: Does the Viral M
<sup>pro</sup>
Protease Target Host Selenoproteins and Glutathione Synthesis?</title>
<author>
<name sortKey="Taylor, Ethan Will" sort="Taylor, Ethan Will" uniqKey="Taylor E" first="Ethan Will" last="Taylor">Ethan Will Taylor</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Radding, Wilson" sort="Radding, Wilson" uniqKey="Radding W" first="Wilson" last="Radding">Wilson Radding</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC</wicri:regionArea>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in nutrition</title>
<idno type="ISSN">2296-861X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Glutathione peroxidases (GPX), a family of antioxidant selenoenzymes, functionally link selenium and glutathione, which both show correlations with clinical outcomes in COVID-19. Thus, it is highly significant that cytosolic GPX1 has been shown to interact with an inactive C145A mutant of M
<sup>pro</sup>
, the main cysteine protease of SARS-CoV-2, but not with catalytically active wild-type M
<sup>pro</sup>
. This seemingly anomalous result is what might be expected if GPX1 is a substrate for the active protease, leading to its fragmentation. We show that the GPX1 active site sequence is substantially similar to a known M
<sup>pro</sup>
cleavage site, and is identified as a potential cysteine protease site by the Procleave algorithm. Proteolytic knockdown of GPX1 is highly consistent with previously documented effects of recombinant SARS-CoV M
<sup>pro</sup>
in transfected cells, including increased reactive oxygen species and NF-κB activation. Because NF-κB in turn activates many pro-inflammatory cytokines, this mechanism could contribute to increased inflammation and cytokine storms observed in COVID-19. Using web-based protease cleavage site prediction tools, we show that M
<sup>pro</sup>
may be targeting not only GPX1, but several other selenoproteins including SELENOF and thioredoxin reductase 1, as well as glutamate-cysteine ligase, the rate-limiting enzyme for glutathione synthesis. This hypothesized proteolytic knockdown of components of both the thioredoxin and glutaredoxin systems is consistent with a viral strategy to inhibit DNA synthesis, to increase the pool of ribonucleotides for RNA synthesis, thereby enhancing virion production. The resulting "collateral damage" of increased oxidative stress and inflammation would be exacerbated by dietary deficiencies of selenium and glutathione precursors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32984400</PMID>
<DateRevised>
<Year>2020</Year>
<Month>10</Month>
<Day>01</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">2296-861X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>7</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in nutrition</Title>
<ISOAbbreviation>Front Nutr</ISOAbbreviation>
</Journal>
<ArticleTitle>Understanding Selenium and Glutathione as Antiviral Factors in COVID-19: Does the Viral M
<sup>pro</sup>
Protease Target Host Selenoproteins and Glutathione Synthesis?</ArticleTitle>
<Pagination>
<MedlinePgn>143</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fnut.2020.00143</ELocationID>
<Abstract>
<AbstractText>Glutathione peroxidases (GPX), a family of antioxidant selenoenzymes, functionally link selenium and glutathione, which both show correlations with clinical outcomes in COVID-19. Thus, it is highly significant that cytosolic GPX1 has been shown to interact with an inactive C145A mutant of M
<sup>pro</sup>
, the main cysteine protease of SARS-CoV-2, but not with catalytically active wild-type M
<sup>pro</sup>
. This seemingly anomalous result is what might be expected if GPX1 is a substrate for the active protease, leading to its fragmentation. We show that the GPX1 active site sequence is substantially similar to a known M
<sup>pro</sup>
cleavage site, and is identified as a potential cysteine protease site by the Procleave algorithm. Proteolytic knockdown of GPX1 is highly consistent with previously documented effects of recombinant SARS-CoV M
<sup>pro</sup>
in transfected cells, including increased reactive oxygen species and NF-κB activation. Because NF-κB in turn activates many pro-inflammatory cytokines, this mechanism could contribute to increased inflammation and cytokine storms observed in COVID-19. Using web-based protease cleavage site prediction tools, we show that M
<sup>pro</sup>
may be targeting not only GPX1, but several other selenoproteins including SELENOF and thioredoxin reductase 1, as well as glutamate-cysteine ligase, the rate-limiting enzyme for glutathione synthesis. This hypothesized proteolytic knockdown of components of both the thioredoxin and glutaredoxin systems is consistent with a viral strategy to inhibit DNA synthesis, to increase the pool of ribonucleotides for RNA synthesis, thereby enhancing virion production. The resulting "collateral damage" of increased oxidative stress and inflammation would be exacerbated by dietary deficiencies of selenium and glutathione precursors.</AbstractText>
<CopyrightInformation>Copyright © 2020 Taylor and Radding.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Taylor</LastName>
<ForeName>Ethan Will</ForeName>
<Initials>EW</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Radding</LastName>
<ForeName>Wilson</ForeName>
<Initials>W</Initials>
<AffiliationInfo>
<Affiliation>Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, NC, United States.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>09</Month>
<Day>02</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Nutr</MedlineTA>
<NlmUniqueID>101642264</NlmUniqueID>
<ISSNLinking>2296-861X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">COVID-19</Keyword>
<Keyword MajorTopicYN="N">coronavirus</Keyword>
<Keyword MajorTopicYN="N">glutathione</Keyword>
<Keyword MajorTopicYN="N">glutathione peroxidase 1</Keyword>
<Keyword MajorTopicYN="N">protease</Keyword>
<Keyword MajorTopicYN="N">selenium</Keyword>
<Keyword MajorTopicYN="N">selenoprotein</Keyword>
<Keyword MajorTopicYN="N">thioredoxin reductase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>06</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>07</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>28</Day>
<Hour>5</Hour>
<Minute>46</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>29</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32984400</ArticleId>
<ArticleId IdType="doi">10.3389/fnut.2020.00143</ArticleId>
<ArticleId IdType="pmc">PMC7492384</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nutrients. 2019 Sep 04;11(9):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31487871</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Top Med Chem. 2016;16(13):1530-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26369818</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Intern Med. 2020 Jul 2;:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32613681</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Immunol. 2020 Jun 23;11:1523</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32655583</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2004 Jun 06;5:72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15180906</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nutrients. 2020 Jul 16;12(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32708526</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2003 Jan 10;278(2):1086-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12370191</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Jan 13;11:26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20070897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Med Drug Discov. 2020 Jun;6:100041</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32352080</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Free Radic Biol Med. 2015 Oct;87:1-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26163004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Bioinformatics. 2015 Apr 15;31(8):1204-10</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25504647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2012;7(11):e50300</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23209700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genomics Proteomics Bioinformatics. 2020 Feb;18(1):52-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32413515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Clin Nutr. 2020 Jun 1;111(6):1297-1299</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32342979</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Virus Res. 2008 Apr;133(1):63-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17397958</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>World J Biol Chem. 2014 Feb 26;5(1):68-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24600515</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 1999;10(4):329-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10619700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2013 Jul 19;437(1):7-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23770363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Respir Med Case Rep. 2020 Apr 21;30:101063</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32322478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Toxicology. 2010 Nov 28;278(1):124-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19857540</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEMS Immunol Med Microbiol. 2006 Apr;46(3):375-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16553810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>AIDS Res Hum Retroviruses. 1994 Nov;10(11):1451-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7888200</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 2000 Jun;267(12):3828-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10849002</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Infect Dis. 2020 Jul 10;6(7):1558-1562</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32463221</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Signal Transduct Target Ther. 2017;2:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29158945</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2020 Jul;583(7816):459-468</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">32353859</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biofactors. 2001;14(1-4):117-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11568448</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Endocrinol (Oxf). 2014 Sep;81(3):458-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24628365</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Nutr. 2015 Jan 15;6(1):73-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25593145</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Taylor, Ethan Will" sort="Taylor, Ethan Will" uniqKey="Taylor E" first="Ethan Will" last="Taylor">Ethan Will Taylor</name>
</region>
<name sortKey="Radding, Wilson" sort="Radding, Wilson" uniqKey="Radding W" first="Wilson" last="Radding">Wilson Radding</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000004 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000004 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32984400
   |texte=   Understanding Selenium and Glutathione as Antiviral Factors in COVID-19: Does the Viral Mpro Protease Target Host Selenoproteins and Glutathione Synthesis?
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32984400" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020